Assessing Humour in Edited News Headlines using Hand-Crafted Features and Online Knowledge Bases

BACHELOR THESIS 2020

Kristian Nørgaard Jensen, Marco Placenti, Nicolaj Filrup Rasmussen, Thai Wang June 9, 2020

IT UNIVERSITY OF COPENHAGEN

Data set

Research Questions

2. Methodology

Features

Knowledge Base

- 3. Results
- 4. Summary

Data set

Research Questions

Methodology

Features

Knowledge Base

Results

Summary

(I) Humour Regression

(I) Humour Regression (II) Score 0 - 3

- (I) Humour Regression
- (II) Score 0 3
- (III) SemEval 2020 [2]

Data set

Research Questions

Methodology

Features

Knowledge Base

Results

Summary

Headlines	Score
Sam's Club closes hundreds of stores carts nationwide.	0.2
Goldman warns dances on irreversible Brexit plans	0.4
<i>Uber</i> CTO blasts Trump techno in staff email	1.4
<i>Elon Musk</i> has just blasted the world's most powerful rocket into space wall.	2.4
Recent Scandals Highlight <i>Trump</i> 's Chaotic Management Fashion Style	3.0

Data set produced by [1]

Data set

Research Questions

Methodology

Features

Knowledge Base

Results

Summary

Research Question 1. Is it possible to use hand crafted features to aid in a humour recognition task?

Research Question 1. Is it possible to use hand crafted features to aid in a humour recognition task?

Hypothesis 1.1. By encoding meta information like sentence length, it is possible to inject useful information into a humour recognition model.

Research Question 1. Is it possible to use hand crafted features to aid in a humour recognition task?

Hypothesis 1.1. By encoding meta information like sentence length, it is possible to inject useful information into a humour recognition model.

Hypothesis 1.2. Using hand-crafted features can help in capturing structures of varying kinds of humour, thus allowing the model to generalise better.

Research Question 2. Is it possible to enhance humour recognition systems by using Knowledge bases in order to encode domain knowledge?

Research Question 2. Is it possible to enhance humour recognition systems by using Knowledge bases in order to encode domain knowledge?

Hypothesis 2.1. Seeing as we are using the data produced by [1], which stems from 2017-18, background knowledge is necessary in order to properly model the humour found in the data set.

Data set

Research Questions

Methodology

Features

Knowledge Base

Results

Summary

Data set

Research Questions

Methodology

Features

Knowledge Base

Results

Summary

Replaced/replacement	Levenshtein distance	
$$ (Syria' \rightarrow `S IH1 R IY0 AH0'	0.1176	
'cereal' \rightarrow `S IH1 R IY0 AH0 L'		
·coup' → 'K UW1'	0.94.74	
'ignorance' \rightarrow `IH1 G N ER0 AH0 N S'	0.9474	

Headline examples	Value
Sam's Club closes hundreds of stores carts nationwide.	0.86
Goldman warns dances on irreversible Brexit plans	0.33
Uber CTO blasts Trump techno in staff email	0.57
Elon Musk has just blasted the world's most powerful rocket into space wall.	1.00
Recent Scandals Highlight Trump's Chaotic Management Fashion Style	0.86

Headline examples	Value
Sam's Club closes hundreds of stores carts nationwide.	0.35
Goldman warns dances on irreversible Brexit plans	0.30
Uber CTO blasts Trump techno in staff email	0.35
Elon Musk has just blasted the world's most powerful rocket into space wall.	0.60
Recent Scandals Highlight Trump's Chaotic Management Fashion Style	0.35

Data set

Research Questions

Methodology

Features

Knowledge Base

Results

Summary

KNOWLEDGE VECTORS

Hillary Clinton

	Min	Average	Median	Max
NELL	0	4.8	5	13
NELL + WordNet	1	7.2	7	18

Data set

Research Questions

Methodology

Features

Knowledge Base

Results

Summary

Root Mean Squared Error (RMSE)

$$\sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

RESULTS

System	Test Score	Stddev
Mean Baseline	0.57471	(N/A)
Median Baseline	0.59140	(N/A)
Linear Regression	0.57361	(N/A)
CNN W. Highway Network	0.57543	0.00064
Multi-Channel CNN	0.59580	0.00510
KBLSTM	0.57304	0.00119
NNLM	0.56211	0.00111
Base model	0.55510	0.00168
Base model rounded ¹	0.55440	0.00200
Base model Albert Word Encoder ²	0.57397	0.00066
HP Tuned base model	0.54476	0.00214
Extended model	0.54576	0.00145
HP Tuned extended model	0.54441	0.00214

Data set

Research Questions

Methodology

Features

Knowledge Base

Results

Summary

(I) Hand-Crafted Features

- (I) Hand-Crafted Features
 - Some decent results

- (I) Hand-Crafted Features
 - Some decent results
 - Diving in closer might reveal better features

- (I) Hand-Crafted Features
 - Some decent results
 - Diving in closer might reveal better features
- (II) Knowledge Encoder

- (I) Hand-Crafted Features
 - Some decent results
 - Diving in closer might reveal better features
- (II) Knowledge Encoder
 - Encodes the right information

- (I) Hand-Crafted Features
 - Some decent results
 - Diving in closer might reveal better features
- (II) Knowledge Encoder
 - Encodes the right information
 - Not incorporated correctly

THANK YOU!

SENTENCE LENGTH & RELATIVE POSITION

FEATURES

Bachelor Thesis 2020 | IT University of Copenhagen

PROBING ENCODED KNOWLEDGE

REFERENCES I

 N. Hossain, J. Krumm, and M. Gamon.
"president vows to cut <taxes> hair": Dataset and analysis of creative text editing for humorous headlines.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 133–142, Minneapolis, Minnesota, June 2019.

N. Hossain, J. Krumm, M. Gamon, and H. Kautz. Semeval-2020 Task 7: Assessing humor in edited news headlines.

In Proceedings of International Workshop on Semantic Evaluation (SemEval-2020), Barcelona, Spain, 2020.

 Q. Liu, H. Jiang, A. Evdokimov, Z.-H. Ling, X. Zhu, S. Wei, and Y. Hu. Probabilistic reasoning via deep learning: Neural association models. arXiv preprint arXiv:1603.07704, 2016.