
Assessing Humour in Edited News

Headlines using Hand-Crafted Features

and Online Knowledge Bases

Nicolaj Filrup Rasmussen
nicr@itu.dk

Kristian Nørgaard Jensen
krnj@itu.dk

Marco Placenti
mapl@itu.dk

Thai Wang
twan@itu.dk

Bachelor thesis
BSc. Data Science

May 15, 2020

Supervisor: Barbara Plank

A B S T R A C T

In this thesis we develop an architecture aimed at tackling humour intensity predic-
tion. The task has a continuous label space contrary to much previous work, which
has mostly concerned itself with discrete (and often binary) classification.

Using a combination of techniques the regression model seeks to incorporate
many aspects of humour. By combining modern neural encoders with classical
hand-crafted features and neural language models we hypothesise that it is possible
to capture many perspectives of the complex task.

By comparing a variety of configurations to relevant baselines we conclude that
the proposed model performs well. An ablation study shows that the main contrib-
utor to the models success is the neural language model. By analysing the compo-
nents further the work seeks to explore why this is, and proposes some possible
answers for why the components underperform, and how this can be addressed in
future work.

i

C O N T E N T S

Abstract i
Contents ii
List of Figures iii
Preface iv
1 introduction 1

2 background 3

2.1 Humour Classification . 3

2.2 Knowledge bases . 4

3 data and material 6

3.1 Data set . 6

3.2 NELL and WordNet . 7

4 method 10

4.1 Word Encoder . 10

4.2 Feature Encoder . 11

4.3 Knowledge Encoder . 11

4.4 Context Encoder . 12

4.5 Output . 13

4.6 Experimental setup . 13

4.7 Baselines . 14

4.8 Hyper Parameter Tuning . 15

5 results 16

6 discussion 17

6.1 Ablation Studies . 17

6.2 Analysis of the Hand-Crafted Features 18

6.3 Probing . 19

6.4 Knowledge-base . 20

6.5 Model Analysis . 21

6.6 Context Encoder . 21

7 conclusion 23

Appendix 27

a Official model parameters . 27

b Hyper Parameter Tuned Model . 27

c Ablation Study Results . 28

d Probing for NELL database . 29

ii

L I S T O F F I G U R E S

Figure 1 Distributions of headline length and edit relative position . . 6

Figure 2 Example of NELL network representation. 7

Figure 3 Base model architecture . 10

Figure 4 Extended Model architecture with context encoder included . 13

Figure 5 Ablation Study Results. RMSE: Lower is better. 17

Figure 6 Features against true labels . 18

Figure 7 Confusion matrix of relation classifier 20

Figure 8 Histograms of predicted values from baseline models 22

iii

P R E FA C E

We are very happy and honoured to have participated in SemEval 2020 along with
some brilliant researchers from around the world. And we are thrilled that this task
has helped guide us, as we have written this thesis.

We would like to thank Barbara Plank, our supervisor. You helped us find the
task in the first place and you have helped us find a way of making it our own. You
always believed we were capable and were always able to get our work on the right
track and keep our heads in the game.

This thesis has been created under some very strange circumstances. Due to the
ongoing COVID-19 pandemic we have seen the work done from home, apart and
in a strange and unknown environment. We have struggled with motivation and
found it hard to work, but have managed to see it through in no small part due to
our joint commitment to have a culmination to our degree that we can be proud of.

iv

1 I N T R O D U C T I O N

Humour aims at generating amusement and laughter and can for this reason be con-
sidered one of the features enabling the creation of relationships in the interactions
between humans. Understanding humour requires factual knowledge, context com-
prehension and—arguably—intelligence. Due to the wide variety of humour the
amount of background knowledge varies from joke to joke, but for most one needs
to have a basic understanding of the context. Some jokes are build up with an in-
troduction of the context and the needed knowledge whilst others builds upon a
mutual understanding of a given situation. For the latter to work there are multiple
factors that play a role in the definition of humour, such as geographical location,
culture, level of education and many others. All these factors makes the task of
humour detection very hard for machines and artificially intelligent systems in gen-
eral. However, it is equally difficult for humans to classify what is humour and
what is not, purely based on text. Jokes often build upon a special construction,
pronunciations, or sarcasm which are all hard to notice from the written words.

Another property of humour that is making it difficult to work with is the fact
that humour is not a binary property of some text or telling. Jokes and stories can
have varying degree of humour, meaning that not all jokes are equally funny neither
are they either funny or not funny. Moreover, based on the amount of background
knowledge needed and the recipients knowledge thereof the joke can be perceived
with varying degrees of humour intensity.

In recent years, researchers operating in the field of computational linguistics
have started to research the topic, and a lot of progress has been made since the
seminal paper by Mihalcea and Strapparava (2005). However, the quality of data
sets has left many questions unanswered, mainly because they were made of single
punchlines countered by news headlines or because the labels were divided into
binary categories thus ignoring the interesting intensity property of humour.

Hossain et al. (2019) made a remarkable effort on creating a data set of edited
headlines where each headline is assigned a score representing the intensity of hu-
mour that headline was perceived with. This innovative data set enables researchers
to conduct studies on a more granular level and might unlock novel techniques to
get closer to a more efficient and successful computational model of humour. The
data set further distinguishes itself in that contrary to simpler binary data sets, such
as the one presented by Mihalcea and Strapparava (2005), it does not need negative
(not funny) examples. This enables us, as we will see, to sample the humour from
the same distribution in contrast to having purposely made jokes countered by se-
rious texts, thus giving us a homogeneous data set.

In this thesis we develop a basic and an extended neural architecture that ac-
counts for multiple factors that we believe play an important role in detecting the
intensity of humour in an altered news headline. The idea to the thesis stems from
a shared task given at SemEval 2020 (Hossain et al., 2020). As part of our thesis we
participated in the shared task, which produced a system description paper which
holds parts of this thesis (Jensen et al., 2020). All of the data and the code used to
produce the following results is on Github1.

1 Repository: https://github.itu.dk/SentimentGroup/HumorHeadlines

1

https://github.itu.dk/SentimentGroup/HumorHeadlines

introduction 2

In the thesis we have chosen to limit our work to two research questions. The
first of which is:

Research Question 1. Is it possible to use hand crafted features to aid in a
humour recognition task?

In order to analyse the sentences, we included hand-crafted features extracted
from the sentence itself. We formally hypothesise that:

Hypothesis 1.1. By encoding meta information like sentence length, it is possible to
inject useful information into a humour recognition model.

Moreover, humour comes in a variety of compositions and we believe that we
are able to capture information about these varieties in similar hand-crafted features.
Our second hypothesis for RQ 1 is as follows:

Hypothesis 1.2. Using hand-crafted features can help in capturing structures of
varying kinds of humour, thus allowing the model to generalise better.

As we described in the beginning of this chapter, understanding humour re-
quires both factual and contextual knowledge. Our second research questions is
concerned with this property of humour and asks the following:

Research Question 2. Is it possible to enhance humour recognition systems by
using Knowledge bases in order to encode domain knowledge?

We enabled both of our systems to look for the meaning of entities in a given
text using external knowledge bases (Mitchell et al., 2015; Miller, 1995). We have
done so based on the following hypothesis:

Hypothesis 2.1. Seeing as we are using the data produced by Hossain et al. (2019),
which stems from 2017-18, background knowledge is necessary in order to properly
model the humour found in the data set.

2 B A C KG R O U N D

Throughout the thesis we build upon previous work within several areas of research.
Most notably is the one of humour classification, but we are building our solutions
and answering the research questions by looking at studies addressing different
issues too.

2.1 humour classification
Due to its complexity and the prerequisite for a deep understanding of the topic,
previous research contributions towards automatic humour recognition have been
made in selected aspects. The seminal paper by Mihalcea and Strapparava (2005) in-
troduced a binary classification task in humour recognition, using humour-specific
features, such as alliteration, antonyms, and adult slang in conjunction with tradi-
tional text classification models: Naive Bayes and SVM. Due to feasibility, the work
focused solely on short sentences, one-liners, news headlines and proverbs. How-
ever, the data set produced in the paper, contrary to the one used in this thesis,
needs a second document type as the negative examples of humour. This intro-
duces the problem of creating a document classifier rather than a humour classifier.
To combat this problem they only selected negative samples that was similar in
length to the positive samples, and they tested three different sources of negative
examples.

A great resource for finding usable data sets for humour classification is TV-
shows such as FRIENDS. Purandare and Litman (2006) capitalised on this and set
out to classify each spoken turn of FRIENDS, as either funny or not funny. They
defined a funny turn as one where the audience laughs right after the turn. Besides
just using lexical features they also analysed the audio from each of the turns, thus
also creating acoustic features such as pitch and energy. Using the ADTree algo-
rithm on their lexical, prosody and speaker features, they achieved lower accuracies
compared to Mihalcea and Strapparava (2005), however they argue that this is due
to their data being homogeneous, i.e. the data being drawn from the same source
and their speakers being the same for both classes.

With the rise of social media, comedians and regular people have gotten an
outlet for sharing humorous texts, jokes or sarcastic comments. With many types
of humour such as wordplay, irony and sarcasm on a platform such as Twitter, the
task of categorising each tweet into one of many categories can be quite daunting.
Using a semi-supervised learning algorithm Raz (2012) classified tweets into one of
12 predefined categories. They avoid the task of classifying a tweet as either funny
or not by sampling their data from a website that share humorous tweets. The
unsupervised model found 6 categories of features that it uses to distinguish the 12

predefined categories of humour.
A second place which poses as a great resource for human interaction and a

great resource for humorous data is that of Reddit. Weller and Seppi (2019) used
data scraped from Reddit to train a model that can assess whether a joke is funny
or not. They leveraged the voting system on Reddit to determine which posts was
deemed funny and which were not. They, furthermore, demonstrated the effective-
ness of the transformer architecture for humour classification.

Humour consists of several latent semantic structures such as Incongruity, Am-
biguity and Interpersonal Effect (Yang et al., 2015). Looking into representing these
structures is an interesting way to better understand how to discriminate between

3

2.2 knowledge bases 4

humorous and non-humorous texts. Yang et al. (2015) uses a Random forest al-
gorithm to perform humour recognition. They use hand-crafted features build by
interpreting the latent semantic structures of humorous texts.

In recent years with the emergence of Deep Learning, the usage of Convolu-
tional and Recurrent Neural Networks for text classification has risen dramatically.
Combining Convolutional Neural Networks and Highway Networks, Chen and Soo
(2018) focuses on leveraging the power of deep learning for classifying puns, one-
liners and short jokes. They sample data from multiple sources, including related
works, and from different language sources, such as Chinese, thus creating a very
heterogeneous data set for creating robust neural models.

Also using a CNN Chen and Lee (2017) works with a homogeneous data set,
which is sampled from TED talks. The task established here is very similar to that
of Purandare and Litman (2006), however, here they leverage the CNN to find the
features of the utterances rather than creating them, themselves.

Finally, with the extensive work done in Hossain et al. (2019) on humour gen-
eration, the goal of their study is to generate a carefully curated data set of news
headlines with simple edits, based on robust generation strategies, that emphasise
free form over traditional jokes with a strong template. This facilitates further re-
search into the shared tasks described and performed in this report. In their work
Hossain et al. (2019) performs an extensive analysis of the different types of humour
that are present in the generated data. They gain insights into humour generation
strategies (Hossain et al., 2019, see section 3.1) used by their annotators, in fact they
find 8 strategies. The strategies includes, creating sarcasm, creating punchlines, cre-
ating meaningful n-grams (Wall Sesame Street) and creating connections between
entities in the headlines (Trump and hair).

The work done in Hossain et al. (2019) has been extended and the data genera-
tion has been gamified in Hossain et al. (2020). Here they present a new data set
created by crowd sourcing in the form of a game competition. However, contrary to
the original data set this has not been carefully curated and is too different to use
with the original data set.

2.2 knowledge bases
As part of our humour research we are keen on adding external knowledge to our
model for better understanding of the texts. Establishing resources that contains
facts regarding the real world is one of the biggest challenges in this endeavour.
Knowledge bases such as Freebase1 and NELL (Never-Ending Language Learning)
(Mitchell et al., 2015) are not easy to maintain and they are in constant development
to keep up with new facts.

To represent knowledge data in a dense representation, it is needed to develop
an intermediate model that can learn such representations. This is very similar to
the Word2Vec (Mikolov et al., 2013) models. In the case of knowledge, it is often rep-
resented as triplets (subject, relation, object) and thus you should create a model that
can associate a subject and an object. Liu et al. (2016) developed a Neural Associa-
tion Model (NAM) that uses the entire triplet and their subsequent representations
to predict whether or not it was a true triplet. This creates representations of true
relations between objects.

Ahn et al. (2016) creates a Neural Knowledge Language Model (NKLM) which
is an extension of a LSTM model. They structure their data into a set of Topic
Knowledge, which in turn is sets of facts concerning each topic. At each time step
the model then samples a word from either its vocabulary or the Topic Knowl-

1 Has been succeeded by Wikidata

2.2 knowledge bases 5

edge, depending on the context. They furthermore released a data set (WikiFacts) of
Wikipedia texts aligned with Wikidata2 facts.

Where Ahn et al. (2016) uses Knowledge Base (KB) to extend and improve a
Language model, Miller et al. (2016) uses KBs to improve Question Answering
(QA) models. They generalise the Memory Network (Sukhbaatar et al., 2015) ar-
chitecture by creating a key-value memory structure. The model will then store
important knowledge in the key-value memory, which it can then subsequently use
for answering given questions.

Another related work, dedicated to the effort to assimilate external knowledge,
is the study reported in Yang and Mitchell (2017). The work introduced an approach
to leverage external knowledge bases, such as Never-Ending Language Learning
(NELL) (Mitchell et al., 2015) and WordNet (Miller, 1995) (a lexical database), in or-
der to integrate the background knowledge and enhance the learning on Bidirectional-
LSTM. At each time step the model merges its hidden state with candidate concepts
from the external knowledge bases, thus injecting more information than what is
available just in the text. They use their implementation for entity and event extrac-
tion.

2 Wikidata: https://www.wikidata.org

https://www.wikidata.org

3 DATA A N D M AT E R I A L

The data set (Humicroedit) consists of micro-edits on headlines: one word has been
replaced by another word, e.g. “How Trump Just Made America (Pilates) Less Safe".
Five Mechanical Turks were asked to assign a score between [0, 3] to each headline
(0: not funny, 1: slightly funny, 2: moderately funny, to 3: funny) (Hossain et al.,
2019). The overall score of the headline is then the average of those five scores. As
reported by Hossain et al. (2019), the scores are correlated with both the headline
length - measured as number of tokens present in it - and the relative position of
the replaced word within the headline. The humour increased if the edit would
happen toward the end of the headline, as per the reconstruction in fig. 1. In order
to eliminate the noise, the relative positions have been grouped in 10 bins, as showed
in the right-hand side of fig. 1. This approach allows us to spot the increasing trend.

Figure 1: Distributions of headline length and edit relative position

3.1 data set
News headlines, in the humour data set generated in the work of Hossain et al.
(2019), were collected from posts on the social media site, Reddit, specifically on
two sub-reddits: r/worldnews and r/politics from January 2017 to May 2018. Only
headlines that had a word count between 4-20 words from the top 25 English news
sources were kept. The goal of the data collection strategy was to obtain headlines
of mainstream and diverse interests, which would presumably make the editing
of headlines for humour less difficult. For data annotation process, the U.S. based
Mechanical Turk workers were employed to fulfil this purpose. The edited head-
lines were graded by a group of Mechanical Turks instructed as judges to grade
objectively on the edited headline as funny if they believed it would be funny to a
large audience regardless of whether it was fun by itself or in relation to the origi-
nal. Similarly, another group of Mechanical Turks were instructed as editors to edit
the original headlines in such a way that the general audience would find them
funny without the use of cheap humour (profanity, slang, potty humour and crude
sexual references). For each headline, there would be 3 editors assigned, and for
each edited headline, 5 judges would be assigned to grade it. Interestingly, it was
observed by the researchers that the quality of the edits were declining as they ob-
tain more annotated data (repeated, identical edits), and respectively, some judges
were observed to repeatedly assign very low funniness score compared to the 4

other judges. Measures such as randomly sampling a set of judges and editors for
each batch, by swapping exhausted Turks out with newer ones, spelling correction

6

3.2 nell and wordnet 7

and elimination of concatenation of multiple tokens were deployed to mitigate the
aforementioned issues.

In addition to the humour data set (Humicroedit), we also have access to the
FunLines data set (Hossain et al., 2020), which utilised game competition as motiva-
tion for data generation1. Due to some key differences between these two data sets
we decided not to include the FunLines data set. The first difference was how the
tasks (editing and grading) were not outsourced and performed by a similar group
of people, but instead by random participants gathered through the internet, which
in comparison to the Turks, appeared less reliable, thus diminishing in resulted data
quality. Although the participants were encouraged in both approaches to disregard
own bias in the process, one cannot entirely discard them. Vastly different group of
participants also introduced a gap of background knowledge, which would be cru-
cial in understanding and generating humour. Another difference that appeared in
the FunLines data set upon further inspection was misspelling and repeated counts
of concatenation of multiple tokens.

3.2 nell and wordnet
NELL was first developed by Mitchell et al. (2015) to learn basic fundamental se-
mantic relations between entities of many categories. It has since continued to
evolve by reading and extracting new instances of entities and relations from hun-
dreds of millions of web pages. The NELL database contains several columns of
information, but the columns of our interest are within the triplet: (entity, relation,
value). Entity and value embody the concepts or identities that are linked by some
relations, which we thought to be relevant in our attempt to integrate background
knowledge into the proposed model, as background knowledge about topics, such
as events, known relations and entities, were designed to play a significant role in
humour generation strategies (see Mitchell et al., 2015, section 3.1)

Barack Obama

Hillary Clinton

agentcollaborateswithagent

President

officeheldbypolitician

Abraham Lincoln

Vladimir PutinAl Gore

Joe Biden

Richard Nixon

Viktor YushchenkoBill Clinton

wifeof

Figure 2: Example of NELL network representation.

As seen in fig. 2, the network snippet shows Barack Obama, an entity, is connected
to other entities, such as Hillary Clinton and Joe Biden, by the relation, agentcollabo-
rateswithagent. Moreover, Barack Obama is also connected to the concept of president
by officeheldbypolitician, which is also a relation, along with other politicians. How-
ever, not every existing connection conveys correct information. Albeit Joe Biden and

1 Funlines: https://funlines.co/humor/

https://funlines.co/humor/

3.2 nell and wordnet 8

Al Gore’s (marked as red) respective appearance as president according to NELL, the
highest office held by them so far has been vice president.

As for WordNet (Miller, 1995), it is a large lexical database of English that also
contains groups of cognitive synonyms called synsets, which are interlinked by
means of conceptual-semantic and lexical relations. Consequently, the network pro-
vides additional meaningfully related words and concepts in supplement to those
in NELL.

Min Average Median Max

NELL 0 4.8 5 13

NELL + WordNet 1 7.2 7 18

Table 1: Entity coverage for training data

For further investigation of NELL, we have conducted analyses to identify poten-
tial shortcoming in the database itself and our utilisation of it. First of all, we have
investigated how much coverage NELL provides for each headline, in the training
subset, as it is, in this case, a good metric for measuring NELL’s efficacy. As shown
in table 1, the average, median and maximum amount of words NELL is able to
cover are respectively 4.8, 5 and 13, which is quite low, even when considering the
maximum limit of 20 words as well as NELL’s supposedly only regard for entities
(nouns). It is also apparent by the minimum amount of zero that some headlines are
not covered at all. With the addition of WordNet, we observe a significant increase
of 2.4 words on average, a stark increase on the maximum amount covered by 5 as
well as a small increase of 1 on the minimum.

Events Availability

Brexit/ EU referendum (2016-2020) 7
Meghan Markle (2017) 7
Trump Campaign (2016) 7
Donald Trump as politician / president (2016) 7
Barack Obama as former president (2016) 7
MS Surface Pro 3 Launch (2014) X
FIFA World Cup Brazil (2014) X

Table 2: Event list for NELL time scope investigation

Secondly, there is a suspicion that the time scope of the NELL network, belong-
ing to the iteration used in this project, does not seem to align with the time period
of the humour data set mentioned in section 3.1. We perceive this as an issue, since
relations and entities are dynamic over time as well as the existence of some en-
tities entirely. We have, therefore, investigated NELL with curated events, which
took place in 2016 and prior, in table 2. Our findings suggest that the content of
NELL might originate from before 2016, as events from 2016 and later do not exist
in NELL, whereas both events from 2014 do appear. Although it could, at the same
time, also suggest a possibility of an incomplete network.

3.2 nell and wordnet 9

Token Part of speech NELL meaning

as Adverb / conjunction Arsenic
a Article Biotech company
it Pronoun Organisation
he Pronoun Helium
will Verb Faculty
i Pronoun Iodine
him Pronoun Music artist
can Verb Beverage container

Table 3: Examples of errors by NELL

Thirdly, we have found examples of common error in how NELL interpreted
some words for the encoding. In table 3, we have listed the most common errors,
which differ significantly from its original meaning in the headlines, along with the
supposed Part of Speech (POS) tag and the perceived meaning from NELL.

4 M E T H O D

In this section we outline the structure of our system and go into details on the
different components. We outline a model with two different settings, a base model
(fig. 3) and an extended model (fig. 4). The two settings consists of the same three
encoders which handles three different types of inputs. Sections 4.1 to 4.3 explain
the inputs and how they are handled in each of the three encoders. The extended
model add a fourth encoder that takes care of the context of the headlines. The
fourth encoder is presented in section 4.4. Section 4.5 outlines how the results from
each of the three/four encoders are combined and processed. Section 4.6 goes into
the training parameters and extra tricks we used to get more performance from our
model. To have a reference point to match our model against, we create multiple
baselines, all of which is available in section 4.7. Lastly we perform hyper-parameter
tuning, which is explained in depth in section 4.8.

Word Encoder Feature Encoder Knowledge Encoder

ŷ[0, 3]

wreplaced wreplacement

Figure 3: Base model architecture

4.1 word encoder
The word encoder is handling representations of both the replaced and the replace-
ment words in the edited headline. The encoder first encodes each of the words us-
ing a pre-trained neural probabilistic language model (NNLM) (Bengio et al., 2003).
For each of the two words it processes the representation using a Feed Forward
Neural Network (FFNN) that consists of three layers (See appendix A). The NNLM
and the FFNN weights are the same for each of the two words, and thus it works as
a simple Siamese network (Chopra et al., 2005). The processed representations for
each of the two words are concatenated before moving on in the model.

10

4.2 feature encoder 11

Replaced/replacement Levenshtein distance

‘Syria’ → ‘S IH1 R IY0 AH0’

‘cereal’ → ‘S IH1 R IY0 AH0 L’
0.1176

‘coup’ → ’K UW1’

‘ignorance’ → ‘IH1 G N ER0 AH0 N S’
0.9474

Table 4: Example of phonetic distance feature showing transcription from grapheme to
phoneme.

4.2 feature encoder
The feature encoder takes four features that encode humour specific information
from the headlines. Each feature helps the model better understand the concepts
behind humour and helps outline the strategies used by the annotators. The fea-
tures are processed using a 2 layer FFNN (See appendix A).

relative position The first feature encodes the relative position of the replaced
word. The position index is normalised by the maximum index to provide a num-
ber between 0 − 1. It informs the system of whether the headline functions as a
punchline or not. This is consistent with one of the humour generation strategies
found by Hossain et al. (2019), which is setup and punchline.

sentence length The second feature encodes the length of the headline, as
shown in fig. 1. The length is normalised by the maximum length in the data set,
thus providing a number between 0− 1. Hossain et al. (2019) uncovered a relation
between the length of the headline and the score, showing that the longer headlines
had the possibility of also scoring higher. This makes it a perfect feature to include.

phonetic distance For the third feature the replacement and the replaced words
are transcribed into phonemes and the Levenshtein distance between them is calcu-
lated, as shown in table 4. The distance is normalised by the maximum phoneme
length. This feature is used to encode information regarding the strategy uncovered
by Hossain et al. (2019), about connections between the replaced and the replace-
ment word. Here the annotators often replaced a word with either a similar sound-
ing word or a semantically different word. Thus our hypothesis is that this feature
should reflect that.

relative distance The fourth and last feature encodes the cosine distance be-
tween the replaced and replacement word embeddings. FastText embeddings trained
on Wikipedia 2017, UMBC webbase corpus and statmt.org news data set (Mikolov
et al., 2018) are used. Another of the strategies found by Hossain et al. (2019) is the
insertion of incongruity. We hypothesise that finding the similarity between the two
words (replaced and replacement) we can find if the word creates an incongruity.

4.3 knowledge encoder
The knowledge encoder is searching the headline for any known entities occurring
in the NELL (Never Ending Language Learning) database or hypernyms in Word-
Net. Table 5 lists some example headlines that contain entities, such as named
entities (blue), which we believe would benefit from relations and its implication
through their common parent defined by NELL. In contrast to a lexical database,
NELL features entities that are obtained by reading the web, thus filling the gap in
comprehension of concepts that are time- and event based. Even with NELL being a

4.4 context encoder 12

large network, it alone is insufficient in covering a significant part of each headline.
In order to expand the coverage, nouns, excluding pre-existing entities in NELL, are
extracted from WordNet. Each noun is converted to an IS-A relation by adding its
first occurring hypernym as its generalisation. With the integration of WordNet into
NELL, our coverage of entities in each headline improved significantly (table 1).

Each entity is converted to an embedded representation that has been pre-trained
using a Neural Association Model (NAM) presented by Liu et al. (2016). The un-
known words in the headlines are represented by a zero vector. Finally, entity
embeddings get processed by a CBOW model which sums the vectors before they
are processed in a FFNN (See appendix A).

The Knowledge encoder is made with the focus of including background knowl-
edge. However, it should further more aid in figuring out if the replacement word
creates a strong connection with one of the entities in the headline (Trump and
hair)(section 3.1 Hossain et al., 2019, strategy 3).

Headline examples

Breitbart News 29th Most Trafficked Site in America,
overtakes combines PornHub and ESPN.

Barack Obama threatens to upstage Donald Trump’s
Europe acid trip as he visits Germany.

Delhi smog curry chokes India capital with air-
pollution 10 times worse than Beijing.

Elon Musk has just blasted the world ’s most
powerful rocket into space wall.

Table 5: Example of headlines from the training data that wouldn’t have turned out as fun
without the necessary background knowledge. Strike-through (red) denotes a re-
placed word, italic (blue) denotes a named entity that would benefit from the inte-
gration of a knowledge base, like NELL, and green denotes replacement word.

4.4 context encoder
In the base model configuration only the word to be replaced and the replacement
word is used. The original idea was to use the NNLM part of the word encoder to
encode the entire sentence, however it was found during preliminary experiments
that this did not improve performance compared to encoding just the words. In
order to address this an extended configuration is made with a separate context
encoder based on an Albert model (Lan et al., 2019). The encoder takes the entire
headline except the replaced word and creates context embeddings for it. The con-
textual embeddings are created by running the headline through the Albert model
and extracting the pooled output. The embeddings created by the Albert model are
processed using a 2 layer FFNN to scale down the representation and let the model
process it before concatenating it with the other encoder results. The new model
architecture can be seen in fig. 4.

Using the Albert model we created an extra experiment where we wanted the
Albert model to replace the NNLM in the word encoder. For the experiment we
fed the entire headline to the Albert model, and then extracted the replaced words
representation from the contextualised word representations produced by Albert.
We did the same for the replacement word. Now instead of using the NNLM to
encode each of the words we simply input the predefined vectors, thus indirectly
encoding the context of the word. The results of this experiment can be seen in
table 6.

4.5 output 13

4.5 output
A simple linear regression is applied to the concatenation of the three/four encoders.
It predicts an output in the range [0, 3]. Several output layer configurations were
tested but none outperformed this regression.

Word Encoder Feature Encoder Knowledge Encoder

ŷ[0, 3]

wreplaced wreplacement

Context Encoder

Figure 4: Extended Model architecture with context encoder included

4.6 experimental setup
libraries We use Keras (Chollet et al., 2015) with the TensorFlow backend (Abadi
et al., 2015). The pre-trained models, NNLM1 and Albert2, have been provided by
the TensorFlow Hub module. For the phonetic feature we used the “g2p: English
Grapheme To Phoneme Conversion" (Park and Kim, 2019) library. The full source
code for the thesis is available at ITU GitHub3. All data needed to reproduce the
model is available in the repository.

training setup The Adam optimiser (Kingma and Ba, 2014) is used to optimize
the models. The model was trained for 25 epochs where it converges, however we
applied early stopping where applicable with patience of 5 epochs. As main eval-
uation metric we use Root Mean Square Error (RMSE), which for some prediction
vector ŷ and a true value vector y is:

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(1)

hyperparameter tuning For the subsequent hyperparameter tuning we used
the newly created Keras-Tuner4 library, which is built specifically for Keras. In

1 NNLM: https://tfhub.dev/google/nnlm-en-dim128/2
2 Albert: https://tfhub.dev/tensorflow/albert_en_base/1
3 Source code: https://github.itu.dk/SentimentGroup/HumorHeadlines
4 Keras-tuner: https://github.com/keras-team/keras-tuner

https://tfhub.dev/google/nnlm-en-dim128/2
https://tfhub.dev/tensorflow/albert_en_base/1
https://github.itu.dk/SentimentGroup/HumorHeadlines
https://github.com/keras-team/keras-tuner

4.7 baselines 14

this library we made use of the Hyperband optimisation strategy explained in sec-
tion 4.8.

4.7 baselines
To make sure that the results we get are due to the features we have created we
establish multiple baselines to test our model against.

mean/median baseline The first and most simple baseline is the mean and
median score of the training set. Here we compute the mean and median score on
the training set and predicts those for each data point.

linear regression The second baseline we create is a linear regression model
that is fitted to our handcrafted features. This is a good baseline to tell us whether
the complexity of our model is worth it or we can get by with a simple regression
model.

cnn w. highway network To test our model against literature in the area of
research we established a similar model to the one presented in Chen and Soo (2018).
In Chen and Soo (2018) they use their CNN model for binary humor classification
contrary to this study where we are predicting a continuous score. This is a CNN
model with 3 convolutional layers and a max pooling layer which is follow by a
Highway Network (Srivastava et al., 2015) that consists of 3 Highway layers and
a single linear regression output. The filter sizes on the convolutional layers are
(5, 6, 7) and the number of filters is 100.

multi channel cnn As a second approach to using CNNs we have created a
multi channel CNN model (Kim, 2014). This model uses 4 different embeddings,
namely GloVe5, FastText6, Google News7 and Custom Word2Vec trained on our
own data. Each of the four embedding types is processed in its own CNN, before
the results gets merged together and processed using fully-connected layers.

kblstm Seeing as our Knowledge encoder is drawing inspiration from Yang and
Mitchell (2017) it is natural to use an implementation of the KBLSTM as a baseline.
The implementation used here is taken from this repo8 and it is a conversion from
the original implementation in theano to keras. In Yang and Mitchell (2017) they
extend the LSTM architecture to incorporate a knowledge module that at each time
step t retrieves candidate concepts from the knowledge base. Using these candidate
concepts it creates a new state vector that integrates the candidate concepts and the
original state vector from the LSTM. Yang and Mitchell (2017) tests their model on
entity extraction and on event extraction, in which it outperforms the related other
models.

nnlm In our proposed model we use the NNLM as a word encoder to create en-
codings for the replaced and replacement word. The NNLM is originally developed
as a sentence encoder and thus as a baseline we are able to use it as the encoder
and try to regress over the output of it. The NNLM model is followed by 3 fully
connected layers with sizes (64, 32, 16) and a single linear regression output layer.
The encoding size of the NNLM is 128.

5 GloVe: https://nlp.stanford.edu/projects/glove/
6 FastText: https://fasttext.cc/docs/en/english-vectors.html
7 Google News: https://code.google.com/archive/p/word2vec/
8 KBLSTM: https://github.com/aianurag09/KBLSTM

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html
https://code.google.com/archive/p/word2vec/
https://github.com/aianurag09/KBLSTM

4.8 hyper parameter tuning 15

4.8 hyper parameter tuning
An integral part of developing new machine learning models is making sure to op-
timise all the parameters to achieve the best possible performance. When we had
settled on the structure of our model we set out to perform hyper-parameter tuning.
We chose to use the Hyperband algorithm for optimising our parameters. Hyper-
band (Li et al., 2018) is a Bandit-based approach to the hyper parameter tuning
problem. The algorithm extends the SuccessiveHalving algorithm by using it as a
subroutine. It does so to automatically choose the number of configurations to try
given a finite budget.

The resulting model can be seen in appendix B. The tuning was run over all
parameters in the network, and ran for 8 Hyperband iterations. We tested multiple
layers in each of the encoders, each layer size, the amount of dropout and the
activation function. It was found before hand that adding extra layers to the output
did not result in any increase in performance, thus the output was kept to a linear
regression style. The resulting score can be seen in table 6. When evaluating the
set of parameters we used the development set, thus only predicting on the test set
once when we had chosen the optimised parameters. Both the base model and the
extended model have been hyper parameter optimised. When we optimised the
extended model we fixed the parameters found when optimising the base model as
to limit the search space.

5 R E S U LT S

In this section we present the results gathered from experiments with the base
model and the extended model. We test both the base model and the extended
model against the seven different baselines outlined in section 4.7. We have trained
all models 10 times (where applicable), and the results outlined in table 6 is the
mean of those runs and their according standard deviation on the test set.

System Test Score Stddev

Mean Baseline 0.57471 (N/A)
Median Baseline 0.59140 (N/A)
Linear Regression 0.57361 (N/A)
CNN W. Highway Network 0.57543 0.00064

Multi-Channel CNN 0.59580 0.00510

KBLSTM 0.57304 0.00119

NNLM 0.56211 0.00111

Base model 0.55510 0.00168

Base model rounded1
0.55440 0.00200

Base model Albert Word Encoder2
0.57397 0.00066

HP Tuned base model 0.54476 0.00214

Extended model 0.54576 0.00145

HP Tuned extended model 0.54441 0.00214

Table 6: Average scores on the test set. Computed over 10 runs. 1. Experiment where
we rounded the predictions to the nearest fifth. 2. Experiment where we used
contextualised embeddings produced by Albert as input to the word encoder.

The base model without hyper parameter tuning achieves an RMSE of 0.55510
on the test set. After hyper parameter tuning the base model perform slightly better
with an RMSE of 0.54476. By including context (the extended model) we get a barely
noticeable increase in performance compared to the not optimised base model reach-
ing an RMSE of 0.54576. Again after hyper parameter tuning we achieve slightly
better results with an RMSE of 0.54441.

Because of how the data set is constructed, the possible scores can assume any
discrete value from a minimum of 0 to a maximum of 3 with an interval of 0.2. As
our model outputs a continuous score, we tested how rounding the predicted value
to the closest real possible value performed (i.e. predicted score of 1.37 was rounded
to 1.40, and 0.72 to 0.80). The experiment did deliver a very slight improvement.
As a matter of fact, we saw a RMSE of 0.55440 compared to the 0.55510 achieved
without rounding.

As explained in section 4.4 we made an experiment where we used contextu-
alised embeddings produced by the Albert model. As can be seen in table 6 the
model performs significantly worse when using these embeddings instead of the
NNLM. The performance is on par with the linear regression model and is worse
than the NNLM in itself.

Five of the variations of the developed model outperforms all of our baselines.
We can see that three of the neural baselines performs on par with the linear regres-
sion and mean/median baselines. Moreover, our median baseline performs worse
compared to the mean baseline. However, this is most likely due to the fact that the
median is 0.8 and the mean is 0.935, thus the median is farther away from the higher
scoring headlines than the mean is. It is too interesting that the multi-channel CNN
performs close to the median rather than the mean and linear regression.

16

6 D I S C U S S I O N

In this section we analyse our findings and attempt to reach a conclusion about the
usefulness and shortcomings of the proposed architecture.

6.1 ablation studies
In order to help test hypotheses 1.1 and 2.1 an ablation study was conducted. Fig-
ure 5 shows the performance on the training and development sets for each of the
ablated features of the model without context. For a more detailed overview see
appendix C.

An ablation study removes one part of the model or one feature at a time in
order to give an indication of how much that part contributes to the performance.
If a part of the model is contributing a lot we would expect the performance to get
worse if it is removed. If two parts of the model are encoding the same information
we expect the performance to remain unchanged when either is removed, but to
worsen when they are both removed.

Ablation studies provide a good hint at the part-wise performance and that is
why we do one here.

Figure 5: Ablation Study Results. RMSE: Lower is better.

Word identity of the micro-edits turns out to be the most important feature. A
clear decrease in performance (higher RMSE) can be observed on both training and
development set when the Word Encoder (WE) is removed. Likewise, removing
one of the two word inputs to the Word Encoder causes an increase in RMSE on the
training set. Excluding the Knowledge Base (KB) tells a similar story, causing an
increase of median RMSE on the training set (however, not in mean score, as shown
in the appendix).

Unfortunately, our hand-crafted features alone cause no detectable difference
on either the training or the development set. Neither the feature encoder nor the
knowledge encoder cause an increase in development error when removed indi-
vidually. Interestingly, when both encoders are removed simultaneously (KF) an
increased training error can be observed, albeit the difference is negligible on the
development data. When removing the Word Encoder in combination with one
of the two other encoders it performs notably worse, as expected. It is interesting

17

6.2 analysis of the hand-crafted features 18

to note that the combined word and feature encoder model results in the highest
drop (see appendix) but also the most unstable model with the highest variation as
the boxplot in Figure 5 reveals. This points at the importance of investigating both
mean and median scores in the task.

From the single hand-crafted features we notice that contrary to expectations,
the phoneme-based feature hurts performance; leaving it out improves overall RSME.
Similarly, the position or length-related features of the headline itself were not help-
ful either.

6.2 analysis of the hand-crafted features
In order to understand why the apparent impact of the hand-crafted features is so
limited we investigate their relation to the true labels.

In fig. 6 we see that there is no discernible pattern between the two. A linear
regression line is drawn in blue. It shows that very little information is actually
contained in the features, aside from what a mean baseline would contain.

Figure 6: Features against true labels

This goes some way in explaining the results of the ablation study, but it also
calls into question some of our underlying assumptions about what makes a sen-
tence funny.

In addition the Sentence Length and Relative Position features look nothing like
what we saw in fig. 1. On the features we do not do the pooling described in

6.3 probing 19

chapter 3. This makes for a much noisier output; so noisy in fact, that it appears to
not be useful at all.

The relative distance feature also has an issue where, if one or both words are
not in the embedding vocabulary they are assigned a distance 0. This is an issue,
because distance 0 denotes that the two words are equal. Whereas assigning the
words a large distance, would perhaps be more suitable.

This highlights an important limitation of the study. A good future work would
be to attempt new features. As well as new ways to implement and integrate the
features in the model. In this work we have focused on creating features that fit with
the discoveries made in the data set (chapter 3)(Hossain et al., 2019). However, there
exists a wide range of related work that goes deeper into the semantic and lexical
structure of humour, and from that informs features that better explain humour
than ours do.

6.3 probing
Following the same line of reasoning presented in the previous section, we investi-
gate why the knowledge encoder does not reflect our assumptions, that a broader
factual knowledge is necessary in order to fully understand a joke or a punchline.
We analysed the NELL embeddings more in depth, specifically we built a simple
classifier aimed at predicting the type of relation existing between two given entities.
We took inspiration from the word content tasks proposed in Conneau et al. (2018).
In order to exclude high and very-low frequency relations, we only analysed 99 out
of the existing 831 relations in the NELL database. These are all mid-frequency rela-
tions that appear between 700 and 1,300 times in the whole database. This approach
resulted in 93,098 records, 65% of which were used for training, 15% for validation
and 20% for testing. The two pre-trained entities representation have been concate-
nated together and used as input in a simple 2-hidden-layers Feed Forward Neural
Network that predicts the relation between the entities.

As a result of this analysis we see that the classifier performs relatively well.
However, the few major misclassifications we observed are not even remotely simi-
lar. For instance, we see class 11 (macro-topic: beverage) and class 61 (automotive
business) being misclassifed with class 18 (university), and class 4 (product launch-
ing) and 65 (animals) being assigned to class 0 (coaches).

A random guess would have yield an accuracy score of 0.01, while the classifier
reached an accuracy of 0.5816 on the training set and 0.5325 on the test set. The
latter can be seen in the confusion matrix in Figure 7.

6.4 knowledge-base 20

Figure 7: Confusion matrix of relation classifier

We therefore conclude that even though the NELL database carries meaningful
information, either those are not actually relevant for the tasks we performed or our
knowledge encoder architecture is not able to model it properly.

6.4 knowledge-base
We set out in RQ 2 to find out whether or not implementing an external knowledge
would help the model better understand the content of the text. We hypothesised
that we needed background knowledge based on the method of creation of the data
set as explained in Hossain et al. (2019)(hypothesis 2.1). However, as shown in our
ablation study in section 6.1 our implementation of the knowledge encoder does
not seem to impact our performance as much as we had hoped. Our hypothesis for
this is that our implementation of the knowledge encoder is not capable of using
the data available in our knowledge embeddings (section 6.3).

First we address the weaknesses of our utilisation of NELL: firstly, about how
we pick from multiple variations of the same token, and then how we choose from
multiple hypernyms. Tokens are generally dealt as single word tokens with the
exception of replacement/replaced words, which can consist of two or more words.
Consequently, multi-word tokens are misrepresented during encoding. For exam-
ple, North Korea would instead be considered as two separate words of North and
Korea. Another shortcoming lies in the way we match tokens, which only allows ex-
act match during lookup in NELL’s vocabulary, as it does not suggest any potential
match. Although lemmatisation has mitigated this to a certain degree by grouping
together the inflected forms of a word into its lemma, it is far from perfect, as it
is does not always lemmatise correctly. Regardless, the shortcoming persists in the
form of potential loss for similar words that one might, otherwise, consider a single
entity. In the case of multiple variations (in concept or generalisation) of a token, the
last variation is always picked, due to the lack of a sophisticated way to accurately

6.5 model analysis 21

decide the appropriate meaning for the context. Lastly, for tokens with multiple
hypernyms, its first hypernym is always chosen to represent the object in a IS-A
relation. These shortcomings are a possible consequence of our naive approach in
which we utilise NELL and WordNet.

A second inefficiency of our knowledge encoder is the way that we are using the
matched knowledge vectors. In the current model we use the knowledge vectors
as words in a CBOW model and thus simply sum up the vectors before processing
them in a Feed Forward Neural Network (FFNN). We might have been able to get
some extra performance if we had used a temporal model like a RNN to process
the embeddings. Interesting future work would be to test multiple different ways
of applying these knowledge vectors and find which has the highest impact on
performance.

6.5 model analysis
Seeings as we are trying to model a specific distribution, it is interesting too see
how well the proposed models and baselines are doing that. Our models all fall
quite close to the mean grade baseline, and to analyse why this might be, we have
plotted all model predictions as a histogram against the true values histogram in
fig. 8. This way we can get a better look on what the models are actually predicting.

As we can see the neural models tend towards predicting the mean baseline
score rather than producing a similar distribution similar to the gold labels. Visual-
ising the gold labels in this way show why this task is difficult to solve. Seeing as
the score given to a headline is an average of 5 individual scores the resulting dis-
tribution of scores will never fill out the entire spectrum but rather have be placed
at specific intervals that are a multiple of 1/5.

In fig. 8 one can see that the NNLM and the MultiCNN models have potential
to model the true distribution seeing as they are the ones of the baselines that have
the most spread out predictions.

A solution to this spread out behaviour, and an interesting point of future work,
could be changing the type of problem we are looking at. Seeing as each headline is
in a discrete class {0, 0.2, 0.4, . . . , 3.0} we could have interpreted it as a classification
problem, thus we would have been able to predict some of the outliers.

6.6 context encoder
In one of the configurations a context encoder was added to the model. It utilises
contextual embeddings produced by the Albert model. The performance of this
new model architecture is not significantly better than the optimised model. This
indicates that the context is either already captured through a different aspect of
the model or (more likely) is not modelled in a way that enables the model to use
it.

This statement is supported by the ablation study and the feature analysis. It
appears that the model is based primarily on the language model, which while it
does indirectly encode some context, does not encode any contextual information
about the headline. Therefore it seems reasonable to suspect that the context en-
coder is not abundant. This, in turn, suggest that the context encoder does not in
fact encode context in a useful manner to the task.

6.6 context encoder 22

Figure 8: Histograms of predicted values from baseline models

7 C O N C L U S I O N

In this thesis we have developed a model that is able to outperform a variety of
baselines. We have been unable to show much effect from the proposed hand-
crafted features. In addition our research suggests that they seem to encode very
little (if any) information useful to the task. This means we cannot confirm RQ 1.
We cannot however determine that it is entirely impossible to find effective features
and thus this remains an unresolved issue.

In regards to including external knowledge we have only shown a very limited
effect from this. Our exploration of this suggests that the issue is likely either
within the underlying data set or in our encoder implementation. We have shown
good success in encoding the information contained within the knowledge base
in our probing study. But this performance does not appear to manifest in the
model, thus suggesting that it is either not compatible with the task or that the
implementation in the model is insufficient. Our surface level study shows that
there appears to be some shortcomings in the knowledge bases that raises some
questions about to which degree they are correct and up-to-date. This leads us to
inconclusion in regards to RQ 2. We can show that the effect is limited, but are
unable to show whether this is due to knowledge base/task incompatibility, the
model implementation being inadequate or due to hypothesis 2.1 being wrong.

23

B I B L I O G R A P H Y

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng (2015). TensorFlow: Large-
scale machine learning on heterogeneous systems. Software available from ten-
sorflow.org.

Ahn, S., H. Choi, T. Pärnamaa, and Y. Bengio (2016). A neural knowledge language
model. arXiv preprint arXiv:1608.00318.

Bengio, Y., R. Ducharme, P. Vincent, and C. Jauvin (2003). A neural probabilistic
language model. Journal of machine learning research 3(Feb), 1137–1155.

Chen, L. and C. M. Lee (2017). Predicting audience’s laughter using convolutional
neural network. arXiv preprint arXiv:1702.02584.

Chen, P.-Y. and V.-W. Soo (2018). Humor recognition using deep learning. In
Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pp. 113–117.

Chollet, F. et al. (2015). Keras. https://keras.io.

Chopra, S., R. Hadsell, and Y. LeCun (2005). Learning a similarity metric discrim-
inatively, with application to face verification. In 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), Volume 1,
pp. 539–546. IEEE.

Conneau, A., G. Kruszewski, G. Lample, L. Barrault, and M. Baroni (2018). What
you can cram into a single vector: Probing sentence embeddings for linguistic
properties. arXiv preprint arXiv:1805.01070.

Hossain, N., J. Krumm, and M. Gamon (2019, June). “president vows to cut
<taxes> hair”: Dataset and analysis of creative text editing for humorous head-
lines. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 133–142.

Hossain, N., J. Krumm, M. Gamon, and H. Kautz (2020). Semeval-2020 Task
7: Assessing humor in edited news headlines. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2020), Barcelona, Spain.

Hossain, N., J. Krumm, T. Sajed, and H. Kautz (2020). Stimulating creativity with
funlines: A case study of humor generation in headlines.

Jensen, K. N., N. F. Rasmussen, T. Wang, M. Placenti, and B. Plank (2020). Buhscitu
at semeval-2020 task 7: Assessing humour in edited news headlines using hand-
crafted features and online knowledge bases. Submitted to the 14th International
Workshop on Semantic Evaluation.

Kim, Y. (2014, October). Convolutional neural networks for sentence classifica-
tion. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar, pp. 1746–1751. Association for Com-
putational Linguistics.

24

https://keras.io

BIBLIOGRAPHY 25

Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Lan, Z., M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut (2019). Albert:
A lite bert for self-supervised learning of language representations.

Li, L., K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar (2018). Hyper-
band: A novel bandit-based approach to hyperparameter optimization. Journal
of Machine Learning Research 18(185), 1–52.

Liu, Q., H. Jiang, A. Evdokimov, Z.-H. Ling, X. Zhu, S. Wei, and Y. Hu (2016). Prob-
abilistic reasoning via deep learning: Neural association models. arXiv preprint
arXiv:1603.07704.

Mihalcea, R. and C. Strapparava (2005). Making computers laugh: Investigations
in automatic humor recognition. In Proceedings of the Conference on Human
Language Technology and Empirical Methods in Natural Language Processing,
pp. 531–538. Association for Computational Linguistics.

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013). Efficient estimation of word
representations in vector space.

Mikolov, T., E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin (2018). Advances in
pre-training distributed word representations. In Proceedings of the International
Conference on Language Resources and Evaluation (LREC 2018).

Miller, A., A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston (2016).
Key-value memory networks for directly reading documents. arXiv preprint
arXiv:1606.03126.

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of
the ACM 38(11), 39–41.

Mitchell, T., W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi,
M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed,
N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya,
A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling (2015). Never-ending
learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI-15).

Park, K. and J. Kim (2019). g2pe. https://github.com/Kyubyong/g2p.

Purandare, A. and D. Litman (2006). Humor: Prosody analysis and automatic
recognition for f* r* i* e* n* d* s. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing, pp. 208–215.

Raz, Y. (2012). Automatic humor classification on twitter. In Proceedings of
the 2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies: Student Research
Workshop, NAACL HLT ’12, USA, pp. 66–70. Association for Computational Lin-
guistics.

Srivastava, R. K., K. Greff, and J. Schmidhuber (2015). Highway networks.

Sukhbaatar, S., a. szlam, J. Weston, and R. Fergus (2015). End-to-end memory net-
works. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett
(Eds.), Advances in Neural Information Processing Systems 28, pp. 2440–2448.
Curran Associates, Inc.

Weller, O. and K. Seppi (2019). Humor detection: A transformer gets the last
laugh. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 3612–3616.

https://github.com/Kyubyong/g2p

BIBLIOGRAPHY 26

Yang, B. and T. Mitchell (2017, July). Leveraging knowledge bases in LSTMs for
improving machine reading. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Vancouver,
Canada, pp. 1436–1446. Association for Computational Linguistics.

Yang, D., A. Lavie, C. Dyer, and E. Hovy (2015). Humor recognition and humor
anchor extraction. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pp. 2367–2376.

A P P E N D I X

a official model parameters

Feature Encoder Knowledge Encoder Word Encoder

Layer 1 16 Layer 1 32 Layer 1 64

Dropout 1 0.5 Dropout 1 0.5 Dropout 1 0.5
Activation 1 relu Activation 1 relu Activation 1 relu
Layer 2 16 Layer 2 16 Layer 2 32

Dropout 2 0.5 Dropout 2 0.5 Dropout 2 0.5
Activation 2 relu Activation 2 relu Activation 2 relu

Layer 3 16

Dropout 3 0.5
Activation 3 relu

Output 1

b hyper parameter tuned model

Feature Encoder Knowledge Encoder Word Encoder Context Encoder

Layer 1 104 Layer 1 120 Layer 1 480 Layer 1 128

Dropout 1 0.4 Dropout 1 0.05 Dropout 1 0.15 Dropout 1 0.5
Activation 1 relu Activation 1 sigmoid Activation 1 relu Activation 1 sigmoid
Layer 2 8 Layer 2 104 Layer 2 144 Layer 2 160

Dropout 2 0.3 Dropout 2 0.2 Dropout 2 0.5 Dropout 2 0.5
Activation 2 relu Activation 2 sigmoid Activation 2 relu Activation 2 relu

Layer 3 8

Dropout 3 0.2
Activation 3 tanh

Output 1

27

c ablation study results 28

c ablation study results

Configuration

Training Development

Median Mean Stddev Median Mean Stddev

F 0.550 0.555 0.0180 0.546 0.551 0.0131

EW 0.562 0.568 0.0121 0.546 0.549 0.00677

OW 0.567 0.568 0.00796 0.547 0.548 0.00425

WE 0.624 0.624 0.0146 0.589 0.589 0.00948

KB 0.553 0.557 0.0102 0.550 0.550 0.00247

WD 0.554 0.555 0.0140 0.548 0.549 0.00504

WP 0.553 0.553 0.0102 0.549 0.549 0.00492

SL 0.553 0.555 0.00780 0.549 0.549 0.00383

PD 0.549 0.551 0.00923 0.547 0.547 0.00348

FE 0.564 0.567 0.0121 0.550 0.551 0.00387

KF 0.567 0.566 0.00556 0.549 0.550 0.00257

KW 0.614 0.614 0.00725 0.579 0.580 0.00119

FW 0.622 0.634 0.0313 0.588 0.607 0.0336

Table 7: Ablation Study Results; F = Full Model; EW = Edited Word; OW = Original Word;
WE = Word Encoder; KB = Knowledge-Base Encoder; WD = Words Distance; WP
= Words Position; SL = Sentence Length; PD = Phonetic Difference; FE = Feature
Encoder; KF = Knowledge and Feature Encoders; KW = Knowledge and Word
Encoders; FW = Feature and Word Encoders.

d probing for nell database 29

d probing for nell database

Relation Name Class ID

coachesteam 0

agentcompeteswithagent 1

locationofitemexistence 2

meetingeventtitleatdate 3

launchingproductcompany 4

softwareisprogrammedinprogramminglanguage 5

statecontainscity 6

inverseofvegetablecanbeservedwithgrain 7

bakedgoodservedwithbeverage 8

scenecontainsobject 9

stateorprovinceresidenceofperson 10

beveragemadefrombeverage 11

athleteplayssport 12

losingscoreofsportsgame 13

wifeof 14

dateofpersonbirth 15

inverseofcriminalssuchascriminals 16

statelocatedincountry 17

universityoperatesinlanguage 18

hasofficeincity 19

inverseofmammalinducesemotion 20

architectssuchasarchitects 21

personinacademicfield 22

automobileenginesuchasautomobileengine 23

crustaceanisatypeofarthropod 24

cityhasstreet 25

inverseofweaponmadeincountry 26

sportsgamescore 27

inverseofriveremptiesintoriver 28

televisionshowisbasedonmovie 29

agentstudiesphysiologicalcondition 30

diseasecausesphysiologicalcondition 31

bodypartwithinbodypart 32

countryhascompanyoffice 33

inverseofarchaeasuchasarchaea 34

roadaccidentcasualtiesnumber 35

meetingeventtitlehasmeetingeventtype 36

cityresidenceofperson 37

organizationnamehasacronym 38

musicalartisthadapetanimal 39

languageschoolincity 40

objectpartofobject 41

arteriessuchasarteries 42

beveragecontainsprotein 43

animaleatfood 44

thinghascolor 45

countrylanguage 46

specializationof 47

hospitalincity 48

academicfieldsuchasacademicfield 49

clothingmadefromplant 50

d probing for nell database 30

Relation Name Class ID

isoneoccurrenceof 51

cityleadbyperson 52

inverseofcoachcanspeaklanguage 53

clothingtogowithclothing 54

vegetableisproducedatcountry 55

inverseofsoftwareprogrammedinprogramminglanguage 56

malecanbethesameascomedian 57

languageofcountry 58

stadiumlocatedincity 59

coachesathlete 60

inverseofautomobilemakerchiefexecutiveceo 61

leaguestadiums 62

mammaleatsinsect 63

locationofpersonbirth 64

arthropodcanbeveryirritatingtomammal 65

hotelincity 66

cityofpersonbirth 67

animalsuchasfish 68

ageofperson 69

inverseofanimaleatvegetable 70

thinghasshape 71

coachesinleague 72

ismultipleof 73

epicenterofearthquake 74

statehascapital 75

agentcreatedorganization 76

attackerinbombing 77

inverseofgrainusedtomakecandy 78

inverseofprofessionssuchasprofessions 79

cityofpersondeath 80

agentcontrols 81

organizationcreatedbyperson 82

superpartoforganization 83

inverseofarteryarisesfromartery 84

teammate 85

inverseofhotelwasbuiltatfarm 86

inverseofawardtrophytournamentwasawardedonstadium 87

politicalgroupofpoliticianus 88

automobilemakercardealersinstateorprovince 89

jobpositionheldbyperson 90

inverseofmalemovedtostateorprovince 91

directorworkedwithactor 92

venueofproductlaunch 93

stadiumoreventvenuedisclosescompany 94

createdbyagent 95

hassister 96

stadiumhometeam 97

producttypeofproductlaunch 98

	Abstract
	Contents
	List of Figures
	Preface
	1 Introduction
	2 Background
	2.1 Humour Classification
	2.2 Knowledge bases

	3 Data and Material
	3.1 Data set
	3.2 NELL and WordNet

	4 Method
	4.1 Word Encoder
	4.2 Feature Encoder
	4.3 Knowledge Encoder
	4.4 Context Encoder
	4.5 Output
	4.6 Experimental setup
	4.7 Baselines
	4.8 Hyper Parameter Tuning

	5 Results
	6 Discussion
	6.1 Ablation Studies
	6.2 Analysis of the Hand-Crafted Features
	6.3 Probing
	6.4 Knowledge-base
	6.5 Model Analysis
	6.6 Context Encoder

	7 Conclusion
	Appendix
	A Official model parameters
	B Hyper Parameter Tuned Model
	C Ablation Study Results
	D Probing for NELL database

